Announcements

1) Quit next week,

Exam 2 week after
(both on Thursclays)

Second Order Linear Equations with
Nonconstant Coefficients
(Section 4.7)

In principle, we know how to solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=f
$$

for $a, b, c$ constants.

Example 1: Solve

$$
t^{2} y^{\prime \prime}+y=\cos (t)
$$

Cant reduce to an equation with constant coefficients.

Again observe that if $f_{1}$ and $f_{2}$ are two solutions,

$$
\begin{aligned}
& t^{2} f_{1}^{\prime \prime}+f_{1}=\cos (t) \\
& t^{2} f_{2}^{\prime \prime}+f_{2}=\cos (t)
\end{aligned}
$$

$$
\begin{aligned}
& t^{2} f_{1}^{\prime \prime}+f_{1}=\cos (t) \\
& t^{2} f_{2}^{\prime \prime}+f_{2}=\cos (t)
\end{aligned}
$$

we can subtract to get

$$
t^{2}\left(f_{1}^{\prime \prime}-f_{2}^{\prime \prime}\right)+\left(f_{1}-f_{2}\right)=0
$$

which is

$$
t^{2}\left(f_{1}-f_{2}\right)^{\prime \prime}+\left(f_{1}-f_{2}\right)=0
$$

So $g=f_{1}-f_{2}$ is a solution to the homogeneous system

$$
t^{2} y^{\prime \prime}+y=0
$$

This means we should first try to solve the homogeneous system, then find one solution to the original. How do we solve the homogeneous system?

$$
t^{2} y^{\prime \prime}+y=0
$$

Wish Upon A Star
Suppose a solution to $t^{2} y^{\prime \prime}+y=0$ is given by $y=t^{r}$ for some power $r$.
Then $y^{\prime}=r t^{r-1}(r \neq 0)$

$$
y^{\prime \prime}=r(r-1) t^{r-2}
$$

Then substituting,

$$
\underbrace{t^{2}\left(r(r-1) t^{r-2}\right)}_{\left(\mathbb{R}^{2}-r\right) t^{r}+t^{r}=0}+t^{r}=0
$$

factor out $t^{r}$

$$
t^{r}\left(r^{2}-r+1\right)=0
$$

Solve $r^{2}-r+1=0$
(we need to do this since $t^{r}=0$ only for $r=0$ )

For $r^{2}-r+1=0$, the Solutions are

$$
\begin{aligned}
r & =\frac{1 \pm \sqrt{1-4}}{2} \\
& =\frac{1 \pm \sqrt{-3}}{2} \\
& =\frac{1 \pm i \sqrt{3}}{2}
\end{aligned}
$$

Solutions of the form

$$
t^{\frac{1 \pm i \sqrt{3}}{2}}
$$

$$
\begin{aligned}
& \frac{1}{2} \pm i \frac{\sqrt{3}}{2} \\
= & \cos \left(\frac{\pi}{3}\right) \pm i \sin \left(\frac{\pi}{3}\right) \\
= & e^{ \pm \frac{i \pi}{3}}
\end{aligned}
$$

How to decompose

$$
\begin{aligned}
& t^{\frac{1}{2} \pm \frac{i \sqrt{3}}{2}} ? \\
& t^{\frac{1}{2} \pm \frac{i \sqrt{3}}{2}}=\left(t^{1 / 2}\right)\left(t^{ \pm \frac{i \sqrt{3}}{2}}\right)
\end{aligned}
$$

How to decompose

$$
t^{ \pm \frac{i \sqrt{3}}{2}} ?
$$

Can write

$$
\begin{aligned}
t^{ \pm \frac{i \sqrt{3}}{2}} & =e^{\ln \left(t^{\frac{i \sqrt{3}}{2}}\right)} \\
& =e^{ \pm \frac{i \sqrt{3}}{2} \ln (t)}
\end{aligned}
$$

(works, but requires loads of justification!)

$$
\begin{aligned}
& e^{ \pm \frac{i \sqrt{3}}{2} \ln (t)} \\
= & \cos \left(\frac{\sqrt{3}}{2} \ln (t)\right) \pm i \sin \left(\frac{\sqrt{3}}{2} \ln (t)\right)
\end{aligned}
$$

Same Result From Constant Coefficients Applies:
The real and imaginary parts are solutions to $t^{2} y^{\prime \prime}+y=0$

So solutions to $t^{2} y^{\prime \prime}+y=0$ are of the form

$$
\begin{aligned}
& C_{1} t^{1 / 2} \cos \left(\frac{\sqrt{3}}{2} \ln (t)\right) \\
& +C_{2} t^{1 / 2} \sin \left(\frac{\sqrt{3}}{2} \ln (t)\right)
\end{aligned}
$$

Check !

$$
\text { Just do } t^{1 / 2} \sin \left(\frac{\sqrt{3}}{2} \ln (t)\right)
$$

Use a computer!

Q: How to find solutions of the nonhomogeneous system?

A: Variation of Parameters!

Variation of Parameters Again

Suppose that there is a single solution $y_{p}(t)$ to $t^{2} y^{\prime \prime}+y=\cos (t)$.

Wish that

$$
y_{p}(t)=u(t) y_{1}(t)+v(t) y_{2}(t)
$$

with $y_{1}(t)=t^{1 / 2} \cos \left(\frac{\sqrt{3}}{2} \ln (t)\right)$

$$
y_{2}(t)=t^{1 / 2} \sin \left(\frac{\sqrt{3}}{2} \ln (t)\right)
$$

Wish further that

$$
u^{\prime} y_{1}+v^{\prime} y_{2}=0
$$

Plug into $t^{2} y^{\prime \prime}+y=\cos (t)$.

$$
\begin{aligned}
& y^{\prime}=u y_{1}^{\prime}+v y_{2}^{\prime} \\
& y^{\prime \prime}=u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+v^{\prime} y_{2}^{\prime}+v y_{2}^{\prime \prime}
\end{aligned}
$$

we get

$$
\begin{aligned}
& v t^{2} y_{1}^{\prime \prime}+v y_{1}+v t^{2} y_{2}^{\prime \prime}+v y_{2} \\
& +t^{2}\left(u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime}\right)=\cos (t)
\end{aligned}
$$

Now have equations

$$
\begin{aligned}
& u^{\prime} y_{1}+v^{\prime} y_{2}=0 \\
& u^{\prime} y_{1}^{\prime}+v^{\prime} y_{2}^{\prime}=\frac{\cos (t)}{t}
\end{aligned}
$$

Solve for $u, v$ !

